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Abstract 
Motivation: Shotgun sequencing generates large numbers of short DNA reads from either an isolated organism 

or, in the case of metagenomics projects, from the aggregate genome of a microbial community. These reads 

are then assembled based on overlapping sequences into larger, contiguous sequences (contigs). The feasibility 

of assembly and the coverage achieved (reads per nucleotide or distinct sequence of nucleotides) depend on 

several factors: the number of reads sequenced, the read length and the relative abundances of their source 

genomes in the microbial community. A low coverage suggests that most of the genomic DNA in the sample has 

not been sequenced, but it is often difficult to estimate either the extent of the uncaptured diversity or the 

amount of additional sequencing that would be most efficacious. 

In this work, we regard a metagenome as a population of DNA fragments (bins), each of which may be covered 

by one or more reads. We employ a gamma distribution to model this bin population due to its flexibility and 

ease of use. When a gamma approximation can be found that adequately fits the data, we may estimate the 

number of bins that were not sequenced and that could potentially be revealed by additional sequencing. We 

evaluated the performance of this model using simulated metagenomes and demonstrate its applicability on 

three recent metagenomic datasets.  

Introduction  
Shotgun sequencing is the cornerstone of modern genomics. An entire genome is sheared into short fragments, 

which are then amplified and sequenced. The large number of short sequences produced, termed reads, are 

assembled into longer sequences (contigs) based on their overlaps, potentially providing the DNA sequence of 

an entire genome. Initially, sequencing projects focused on microbes that could be isolated and cultured. This 

ensured that the sequenced DNA had been obtained from a clonal isolate and that all of the reads originated 

from one genome. A few years ago however, the focus of microbial genomics shifted to sequencing DNA recov-

ered directly from environmental samples, thus sequencing the aggregate genomes of entire communities, or 

metagenomes (Breitbart, et al., 2002; Stein, et al., 1996). Since then, shotgun sequencing methods have been 
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employed in numerous large-scale metagenomics projects (Tringe, et al., 2005; Venter, et al., 2004), resulting in 

a veritable explosion of data—and a need for more sophisticated methods of analysis (Raes, et al., 2007). 

In a typical metagenomics project, a portion of the DNA sampled from an environment is sequenced to yield a 

known number of reads with a known average read length. Each of these reads may represent a section of a ge-

nome, and in some cases several reads may represent the same section. In this work, we divide genomes in the 

metagenome into bins, each corresponding to the average read length, and try to estimate the frequency of 

these bins by the number of reads that are assigned to them.  

Following assembly of the reads into contigs, one can calculate the number of bins that the contig represents, 

and thereby the number of reads per bin. This generates a coverage spectrum (or bin spectrum) that embodies 

the observed number of bins containing various numbers of reads in the sample. However, the observed bins 

are but a portion of the total DNA in the sample. It is often desirable to know what fraction of the total genetic 

diversity in the sample has been analyzed, i.e., how many more potential bins exist for which there are currently 

no reads. This estimate could, in turn, suggest how much additional DNA sequencing would be necessary in or-

der to capture a desired proportion of the sampled DNA for purposes such as functional comparisons between 

metagenomes or mining for novel functions. Approximating answers to these questions necessitates being able 

to model the observed bin spectrum. 

In many fields of science, it is desirable to gain an estimate of the number of unobservables in a collection of 

data. In ecology, the estimation of macrobiological species richness also requires that the unobservable species 

be estimated. Chao and co-workers(Chao, 1984; Chao, et al., 1992) studied the lower bounds of the number of 

unobservables   by nonparametric measures and by using mixed Poisson distributions(Chao and Bunge, 2002). 

Analogously, for metagenomes, 16S rDNA can be used as markers of species, which can be estimated using 

compound Poisson models(Quince, et al., 2008) who also estimate the total amount of DNA by assuming that all 

genomes have the same number of genes. However, this assumption may hold better in the case of viromes, 

where genome sizes are more or less equal. Angly and coworkers used this assumption to good effect when es-

timating the species richnesses   from the full DNA sample(Angly, et al., 2005).  

In demographics and casualty statistics, there is perhaps a longer history still. In this case, the unobservables 

may represent children per mother(Brass, 1958) automobile insurance claims or accidents(Dropkin, 1959; Si-

mon, 1961). However, it is more difficult to establish whether DNA sequences are from the same source than to 

determine whether children have the same mother. 

In this work, rather than estimating species abundances and richness, we will forego species markers and study 

the distribution of DNA in the form of bins. This could provide valuable insights into the functional complexity of 

a metagenome, i,e, the full genetic diversity, and would enjoy far greater sample sizes for estimations, thus in-

creasing the accuracy of estimations. Also, we will apply concepts from statistical fields to metagenomics, in or-

der to evaluate their ability to quickly and accurately estimate the parameters of the bin abundance and also the 

number of unobservable bins. In particular, the Brass estimators(Brass, 1958) prove to be not only easily access-

ible but also accurate. Hopefully, this could complement the existing estimators such as the Chao1 and ACE es-

timators.  
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We report here our exploration of the effect of bin abundances on the distribution of reads per bin of sampled 

DNA. We test our conclusions against simulated assemblies and find a high degree of accuracy. Lastly, we illu-

strate the applicability of our approach using datasets from three metagenomics projects. We find that two of 

them were successful, and we discuss possible reasons why the third set could not be estimated. 

Methods 

Poisson occupancy models 

A genome g of length gL can be divided into non-overlapping bins of length L, where L is the average read length. 

During the sequencing process, the sequences of bins sampled from g can be determined, and are referred to as 

reads. Each bin can be covered by zero or more reads, and a read may only belong to one bin. This process of 

assigning reads to bins is easiest to visualize as a stochastic process; let us assume that we pick one bin at ran-

dom from g and sequence it, resulting in a read. Thereafter, we pick another bin from g and record the read. 

There is a possibility that the read will fully or partially overlap the original bin. This would therefore result in an 

assembly of the reads into a contig. Usually, the output from an assembly is in the form of reads and contigs, but 

from this information, we could calculate how many bins the contig represents, and also how the reads are dis-

tributed on the bins (see supplementary material). This process of picking bins from g can be expressed as a 

Poisson process, and is related to the coverage per nucleotide (Lander and Waterman, 1988; Wendl, 2006). In 

this case, the expected number of reads per bin is RL/gL, i.e. the number of reads times the probability of picking 

the bin.  If we denote the number of reads per bin as k, and the expected number of reads per bin in genome g 

as λg, we can therefore express the distribution of k as  
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     (1) 

When there is only one genome in the sample, i.e., the number of genomes G = 1, all bins are expected to have 

more or less the same expected number of reads. However, when working with actual genomes, various factors 

can cause us to observe unequal occupancy frequencies. Paralogous sequences, for instance, can be virtually 

identical, thus artificially inflating the number of reads observed for such bins. If there were two paralogous bins 

with identical nucleotide sequences, we would observe one bin with twice the expected number of reads. A sim-

ilar multiplication effect can result when repetitive DNA, such as transposons or prophages, blurs the distinction 

between bins. However, these effects are often of little consequence in most sequencing projects of isolated 

organisms (G = 1) given a high average coverage.  

When the sample includes more than one genome (G > 1), we cannot assume the same g for all bins from all 

genomes. The expected number of reads per bin will depend on the relative abundance of the source genomes 

in the sample (Fig 1) so that the expected number of reads per bin for bins in genome i (assuming that the ef-

fects of repeated identical sequences is negligible) is 
j

jjii pRp  / , where R is the total number of reads, 

pi is the relative proportion of genome i in the metagenome and ηj is the number of bins in genome j. Therefore, 

a more general form of (1) is needed—a mixed Poisson distribution for all values of λg, where λg is itself distri-

buted according to a secondary distribution. 
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When G = 1, f(λg) is a constant; when iG > 1, it varies with a secondary probability distribution that reflects the 

relative abundance of the source genomes. Here, α and β are parameters that determine the scale and shape of 

the secondary distribution. Many different distributions can be used for this purpose. Commonly used distribu-

tions are the exponential, lognormal and gamma. In this work, we chose to focus on the gamma distribution as it 

is general enough to describe both exponentially decaying communities (i.e., those with a large variation in bin 

abundances) and those which are more Gaussian (i.e., those where contig abundances are less varied), although 

we also compare our results to a Poisson-lognormal distribution(Izsák, 2007). Thus:  
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An additional advantage of using the gamma distribution is that the resultant compound Poisson-Gamma distri-

bution is itself well-studied and understood as the negative binomial distribution. It has often been used to 

model other over-dispersed Poisson distributions such as the distribution of bacteria in homogeneous mediums 

(el-Shaarawi, 1985) and insurance claims (Dropkin, 1959; Simon, 1961). Here we employ it to approximate the 

distribution of reads per bin, i.e. the bin spectrum. Following this approach, equation (2) can be rewritten as 
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where q=1-p, α=r  and 
β+

β
=p
1

.  

When analyzing a sample where G > 1, we typically want to estimate the bins abundance and the total number 

of bins, including those with no corresponding reads. Since we cannot observe the number of bins with k=0 

reads, the distribution of )λ|f(k g  is null-truncated, i.e., the number of bins with zero reads is missing. Correct-

ing for this yields 
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since P(k=0)= pr in equation (4). 

Estimating parameters 

If x1,x2…xN are observations of the reads per bin, we can attempt to estimate the parameters r and p. The Maxi-

mum Likelihood (ML) estimates for r and p are therefore 
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These equations are cumbersome and can only be solved numerically. A less exact but easier way is to study the 

moments of the null-truncated negative binomial using the Brass estimates (Brass, 1958) to exploit the ratio of 

n1/N, where n1 is the number of bins with k=1 reads:  
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Here, x  is the mean of the reads per observed bin, and var(x) is the variance. These estimates are reasonably 

accurate (see supplementary material for the variances of the Brass estimators) and can also be used as initial 

values for ML estimates. With p* and r* estimated through equations (6) or ML estimates, we can also estimate 

the number of bins which were not occupied by a read: 0N+N=N , where N is the number of observed bins 

N0 is the number of bins with zero reads, and N* is the estimated total number of bins. From equations (5), we 

recall that N0=N*pr, i.e. the number of unobserved bins is N* times the probability of k=0. The variance of N0, 

given our estimates of r and p, is therefore )1()var( *

0

rr ppNN  . 

Evaluating resequencing efforts 

Often, the first study of a metagenome is exploratory in nature. Following the initial foray into the DNA in a 

sample, the potential for follow-up projects is often evaluated. In this case, it may be of interest to adjust the 

scale of the sequencing to capture a larger degree of variation. Since the number of unobservable bins is 

N0=N*pr, we can study the effect of varying the function pr, which is the probability of a bin having zero reads in 

the negative binomial distribution. We cannot solve both p and r in this equation, but if we tentatively consider r 

to determine the shape of the underlying gamma distribution (since α=r) and therefore be immutable, we can 

form an estimate p(c0), which would be the value required to capture a certain percent of the bins in the sam-

ple. The general equation for estimating p(c0) is 

 r

c

ecp

)log(

0

0

)(  ,    (7) 

where c0 is the proportion of bins covered by zero reads. Since the expected average number of reads per bin 

for all bins x1…xN in the set is  

mfenner
Line

mfenner
Line



 

6 

 
p

p
rx



1

,    (8) 

we can calculate the new average reads per bin for all bins in the set by replacing p with p(c0). 

However, it is also likely that as coverage increases, the shape parameter r will also change. Thus, the estimate 

may also change, which would suggest that a new, more accurate estimate could be made. 

Removal of high-occupancy contigs 

This method of forming a negative binomial approximation for the coverage spectrum is robust when bins have 

few reads, but is more sensitive to fluctuations in the number of bins with very many reads. Such situations can 

occur in metagenomic datasets due to the presence of a highly dominant species in an environment, uninten-

tional inclusion of phage, or the introduction of an allochthonous contaminant during processing. These some-

times artificially over-abundant genomes or viromes result in one or more highly covered bins, while the rest of 

the sample is represented by bins with significantly lower coverages.  

When using a gamma distribution to model genome abundance, high-occupancy bins often carry a very low 

probability of occurrence, which causes the approximation to fail. Our method of handling this situation is to 

ignore the high-occupancy bins and the taxa they represent, then attempt to model the remaining population as 

a gamma distribution. This approach minimizes two particular difficulties. First, when a metagenome contains a 

very dominant species, this skews the estimates of how much additional material one would expect to find by 

further sequencing, i.e., the total number of genomes in the metagenome. Second, the effects of contamination 

or unusual assembly protocols on the gamma approximation are minor when they affect low-occupancy bins, 

but they can be quite dramatic when they produce high-occupancy bins. Thus, it can be advantageous to remove 

high-occupancy bins.  

The negative binomial approximation is unable to model the coverage spectrum if r or p are estimated to be 

negative or if r approaches infinity. When r , the negative binomial approaches a Poisson distribution (i.e., 

the variance and mean are equal), suggesting that all genomes occur more or less at an equal frequency. Con-

versely, when 0r , the distribution is heavily skewed towards the k=0 value. Here the approximation may fail 

because the dispersion (variance divided by the mean) of the distribution is too large to be accurately modeled 

by the negative binomial. This situation often arises when high-occupancy bins are present. Thus, we want to 

examine the portion of data that lies between these two conditions, i.e., where the dispersion is low enough to 

model with a negative binomial but still larger than the value where the negative binomial approaches the Pois-

son distribution. 

This approach of removing or partitioning the spectrum has also been used by Chao and coworkers (described in 

(Chao and Bunge, 2002)), where a suitable cutoff is determined by recalculating the goodness of fit to the ob-

served data. Analogously, we can suggest a series of gamma distributions that can be used to approximate the 

bin abundances. 

Results 

Simulated single genomes 
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When all reads are derived from an isolate organism, the expected number of reads per bin (λ) is constant. If 

there are no major contributions from paralogs or high-copy number sequences, then the distribution of reads 

per bin will follow a Poisson distribution, i.e., Po(λ). Recall that the negative binomial approximation approaches 

the Poisson distribution when r → ∞, i.e., when the mean and variance of the coverage spectrum are equal. 

Here, no estimates of α and β are possible, since these values cannot be defined. We can still estimate λ from 

the mean of the estimated distribution, which in our terms is λ=r(1-p)/p. To study such a situation, we simulated 

in silico a genome of 1000 bins (including bins with no reads) according to Po(λ = 1) 1000 times. Each of these 

bins would therefore be covered by on average 1 read, which suggests that ~37% of bins would not be observed 

(eq 1, P(k=0)). The resultant average estimates were 1007.2 ± 71 for N* (the total number of bins) and 0.9987 ± 

0.08 for λ. Thus, although observing only ~63% of bins, the number of unobservables was accurately estimated. 

However, α and β were estimated as either some arbitrary high numbers (>100) or, due to the structure of equ-

ation (5), as negative values, simply because there is no distribution of λ – it is a scalar value. Since the distribu-

tion is approximately Poisson, the Lander-Waterman equations should be used instead (Lander and Waterman, 

1988). 

Simulated metagenomic datasets 

We simulated two sets of metagenomes, with 10,000 bins and 20,000 bins respectively (see supplementary ma-

terial Table S1 and S2) with varying degrees of coverage. Simulations were performed 100 times for each combi-

nation of the negative binomial parameters r and p, which represent the bin abundance. We note that when r is 

low and p is high, the proportion of bins occupied by a read decreases, and estimates of the parameters lose 

precision. This is particularly evident in Table S1 when r = 0.5 and p ≥ 0.7 (average read per bin = 0.21). At this 

low degree of reads per bin, it is unlikely that any estimate will be very accurate. In Table S2, this effect is com-

pensated somewhat by the higher number of bins, but still fails at (r=0.5, p=0.8, average number of reads per 

bin 0.125).. 

We also note a slight (2-3%) overestimation of the total number of bins (column 1, Tables S1). This should be 

taken into consideration when estimating the bin abundance in metagenomes, and could possibly be compen-

sated for. This overestimation decreases to roughly 1% with larger values of N (see supplementary material Ta-

ble S2), suggesting that the accuracy of the model increases with larger datasets, even though the total occu-

pancy may still be low. Notably, sampling of most complex environments is likely to yield a number of bins that 

is considerably greater than the N values used in our simulations. In summary, the larger and more complex the 

environmental sample, the more accurate the estimates made by this method. It is noteworthy to point out that 

estimates are good despite a very low bin count. This is a consequence of assuming a smooth and perfect bin 

abundance, and in a real world situation, the bin abundance will be less smooth even if the underlying bin abun-

dance follows a gamma distribution. 

Simulated de novo assembly 

The previous simulations describe a perfect world, where populations are perfectly complex and assembly is ful-

ly accurate. However, the assembly step in real situations is error-prone and affects the final estimates of the 

total amount of DNA. To study these effects, we simulated metagenomes of 30 and 50 organisms with gamma-

like abundances using MetaSim (Richter, et al., 2008), while varying the number of reads drawn from the meta-

genome. In all cases, we drew a random selection of organisms from the full set of available taxa, excluding 

plasmids. We subsequently assigned each organism a relative abundance drawn from a gamma distribution. In 
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the 30 organism case, the total amount of DNA is roughly 105 Mbps. From this dataset, 50,000 and 100,000 

reads of 1000bp were drawn and assembled using MIRA (used in e.g. (Chevreux, et al., 2004)), repeated twice 

and estimated directly without any bin removal. The estimated amount of total DNA was slightly lower than the 

true value in the 100,000 read case; 84 and 85 Mbps. The underestimation is likely due to misassemblies of un-

related sequences into larger contigs, which therefore inflates the reads per bins. One example of this is an as-

sembly of Thermus thermophilus and Flavobacterium sp. sequences into a contig. Added to this is the effect of 

lower coverage which further complicates the estimates. In the 50,000 reads case, the estimates are 66 and 67 

Mbps, reflecting the lower coverage. In the 50 organism case with 100,000 reads, we again see an underestima-

tion of the real amount of DNA. We observe 85Mbps in both replicates, compared to roughly 130MBp. This is 

consistent with the observations from the 30 organism case, considering that the total coverage is lower relative 

to the 100,000 read simulation of 30 organisms. Thus, it can be concluded that the addition of an assembly step 

will affect the final estimate, depending on how strict or how liberal the assembler is. In this case, numbers are  

underestimated but still reasonable. Naturally, the cross-assembly also affects the estimates of the underlying 

gamma distribution, but may still serve as initial approximations.  

Real metagenomes 

Goodness of fit: To evaluate how well the approximated bin spectrum fits to the observed, we calculated the χ2 

score for the number of bins with one to five reads. The critical χ2 score at four degrees of freedom is 9.448 (95% 

confidence). If the goodness of fit is higher than the critical value, we can reject the assumption that the under-

lying bin abundance can be approximated by a gamma distribution. 

Lake sediment formate community: This study employed stable isotope probing combined with metagenomic 

analysis to characterize the ecological roles of microbes in sediment from Lake Washington (Kalyuzhnaya, et al., 

2008). Five samples of the sediment microbial community were exposed to different 13C- labeled single-carbon 

compounds that are used as a carbon source by various methylotrophs. The sequence of the labeled DNA from 

each sample was then determined by whole genome shotgun sequencing. Here, we study the sample corres-

ponding to 13C-labeled formate. Considering reads of at least 500 bp, we observed 22,741 bins with an average 

read per bin of 1.2. The contig spectrum was then transformed into a bin spectrum (see supplementary materi-

al). 

We can quickly find a good fit (Fig 2a) at χ2=3.7 after removing only two bins of 6 reads each. This fit suggests 

that we cannot reject the hypothesis that the underlying bin abundance is gamma distributed. Furthermore, the 

lognormal distribution is rejected at χ2 = 10.82.  

The Brass estimates are r=0.43 (variance 0.054) and p=0.88 (variance
4104.3  ) The best gamma estimates for 

this dataset are therefore α=0.43 and β=7.2. This suggests that there may be roughly 395,460 additional bins to 

discover, corresponding to 277Mbp given an average read length of 700bp. For comparison, the Chao1 estima-

tor of the number of  bins is 142,359, which of course is the lower bound of bins. 

Lake sediment methylotrophic community: Another Lake Washington sample focused on the methylotrophic 

community by radiolabeling methylamine. This set was more difficult to fit, mostly due to a relatively high num-

ber of bins with more than 5 reads. In particular, we found more bins with 6 reads than bins with 5 reads, which 

is difficult to model using a mixed Poisson model. The best fit we could find was at χ2 = 59, which is much higher 
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than the critical value. Thus we must reject the hypothesis that the underlying bin abundance follows a gamma 

distribution. We must furthermore reject the lognormal distribution, since the χ2-value was even higher at 196. 

This dataset was included as a demonstration that the methods described in this work will not always work; nat-

ural systems are sometimes too complex to be adequately approximated. Since we could not fit the dataset, we 

will not attempt to predict the amount of remaining DNA or the parameters of the underlying bin abundance. 

Termite hindgut:  The termite hindgut project (Warnecke, et al., 2007) studied the role of bacterial symbionts in 

cellulose and xylan degradation in the termite hindgut. Samples from 165 individuals of a Nasutitermes species 

were pooled and sequenced. This dataset was of low coverage; the average read per observed bin was 1.26.  

The best approximation is found after removing two bins of 10 and 11 reads each, resulting in a χ2-value of s=1.0 

(Figure 2b). The Brass estimates are r=1.5 (variance 0.048) and p=0.85 (variance 
4103.1  ). The estimated gamma 

parameters are therefore α = 1.5 and β = 5.54. The χ2-value of the Poisson-lognormal is 7.1. Therefore, the 

gamma distribution is the best approximation, but we cannot reject the lognormal bin abundance either. Based 

on the gamma approximation, we suggest that there are 144,730 additional bins in the sample which where not 

covered by a read, corresponding to an additional 100MBps assuming a read length of 700 bp. The Chao1 esti-

mator suggests a lower bound of 126,670 bins, and the Poisson-lognormal suggests 116,903 bins. 

Additional sequencing 

For the formate and termite datasets, we can form non-rejectable Poisson-gamma approximations. Therefore, 

we can also attempt to estimate the effect of additional sequencing. For the termite set, which is a good fit for 

the PGD, the negative binomial parameters are r=0.54 and p=0.72. To capture 90% of this sample, we set c0=0.1 

so that rep

)1.0log(

*  (see eq. 7). With the estimated value p* = 0.014, we can then calculate the average number 

of reads per bin of the project that captures 90% of the sample: 36x  (eq. 8). This is quite a substantial in-

crease in sequencing compared to the observed 21.0x . This is not surprising considering that much of the 

DNA is present at very small frequencies, and a lot of effort would be spent trying to catch most of the rare bins. 

In terms of reads, the termite dataset has a total of ~52,000 reads. The required number of reads to capture 

90% would be roughly 180 times higher. If our goal is more moderate, i.e. to capture 50% of the bins in the set, 

we estimate 4.1

)5.0log(

*  xep r . Thus, the additional effort required to increase the coverage to 50% of 

bins is quite small compared to the effort needed to cover 90% of bins. For the termite set, we would need 

roughly 7 times more reads. 

For the Lake Washington formate set, we estimated p=0.88 and r=0.43. The equivalent average reads per bin 

required to cover 90% of bins is considerable: 1.90x , and for 50% 7.1x , which should be compared to the 

estimated 06.0x . The formate dataset has 25,000 reads. To cover 90% of the set, we need ~1,300 times 

more reads, and ~30 times more reads to cover 50%. 

Discussion 

Applicability 
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The compound Poisson model for bin occupancy that we present here assumes that the assignment of reads to 

bins is mechanistic and can be described by a Poisson process, and the expected number of reads per bin de-

pends on the abundance of the genome to which the bin belongs. We model the bin abundance distribution as a 

gamma distribution. However, as illustrated by the methylotroph set, there is no law of nature that requires the 

abundances to be so distributed, nor is a gamma distribution a consequence of large numbers of organisms. 

Nonetheless, the gamma distribution is flexible enough to accommodate a variety of patterns of relative abun-

dances. Indeed, for all three real datasets, the gamma seems more appropriate than the lognormal. An addi-

tional reason to focus on the gamma distribution is the relative ease of handling as compared to many other 

compound Poisson distributions. 

The methodology in this work is not novel; it has been used extensively in applied statistics, especially in the 

field of casualty actuarial science. Our contribution is to demonstrate how the work of Brass(Brass, 1958), 

Dropkin (Dropkin, 1959), Simon (Simon, 1961), and others is relevant and applicable to metagenomics today.  

The estimates of the parameters α and β are highly accurate for simulated datasets where the contig abundance 

follows a continuous gamma distribution, and reasonably accurate when lower numbers of species are drawn 

randomly from a gamma distribution. Thus, even imperfect abundances can be captured, given enough reads. 

With real metagenomic datasets, however, estimates are slightly less accurate, for several reasons. One major 

factor is the noise inherent in sequencing and assembly. For instance, cross-hybridization may produce incorrect 

read assignments and chimeric assemblies, thus leading to an inaccurate number of reads per bin. Secondly, 

highly similar or multi-copy sequences, such as transposons and phages, can result in a few bins with very high 

coverage. These occurrences are difficult to model, since the probability of such a high-coverage bin arising by 

pure chance is very low. Another important factor is the quality of assembly; as we have seen, a too greedy as-

sembly will result in an underestimation of the total amount of DNA, just as an overly cautious assembly will in-

flate the estimate. Finally, the available data may be difficult to assess since some sequencing projects employ 

techniques that interfere with our subsequent analysis. For example, while assembling reads onto previously 

sequenced genomes of other organisms has its advantages, it does not help estimations of bin abundances. 

Likewise, some metagenomics projects filter the organisms in the environmental sample prior to sequencing 

based on for instance cell size (Venter, et al., 2004) or metabolism (Kalyuzhnaya, et al., 2008). Estimates based 

on such data would therefore reflect only this subset of organisms. 

In some cases, a metagenome consists of many low abundance organisms and assembly is minimal. Frequently, 

assembly is not accurate (Mavromatis, et al., 2007), which could result in an inaccurate estimation of bin abun-

dances. For most analyses it is preferable not to attempt to assemble the sequences in such occasions and fol-

low a more “gene centric” type of analysis, for instance the Hypersaline mat and Soil projects (Kunin, et al., 

2008; Tringe, et al., 2005). However, since we have no assembly and therefore no bin spectrum, so we cannot 

use this data for the prediction of the bin abundance. Indeed, the goals of these projects were to catalog protein 

functions in a metagenome, not to study the bin abundances. 

Our methodology enables us to estimate bin abundance, but generally not species abundance. In order to di-

rectly relate the two, one must assume that all species have approximately the same genome size. This assump-

tion may be warranted when studying species where all genome sizes are roughly equal, such as viral communi-
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ties (Angly, et al., 2005), but not for microbial metagenomes. Here, genome sizes vary significantly, and a species 

with a larger genome would contribute more bins to the sample per genome copy. 

In some cases, the species abundance can be estimated by various phylogenetic binning procedures (Dalevi, et 

al., 2006; Heath and Pati, 2007), but these methods will only be effective for dominant species with high cover-

age. For the large majority of cases, rare species will have only a small contribution to the bin spectrum. Thus 

these species, which may represent a large proportion of the species richness, cannot be phylogenetically 

binned.  

Another approach for estimating the species abundance, or more often to catalog the species that are present in 

a metagenome, is to focus on a subset of sequences which are assumed to be species-specific signatures, such 

as the 16S ribosomal DNA (16S rDNA) (Quince, et al., 2008; Schloss and Handelsman, 2005; Tringe, et al., 2005). 

This subset can be handled in much the same way as a full metagenome, but with the distinction that one is se-

lectively looking at only about 1/1000th of the DNA sample. While 16S rDNA more accurately identifies unique 

species, the probability of observing such a signature sequence is much lower than the probability of observing 

any random sequence from the same genome. Thus rare species are more prone to go undetected. If we focus 

on DNA abundance on the other hand, each organism will contribute its full genome to the sample, thereby re-

ducing small-sample effects. 

Pitfalls of sequencing methodology 

This, or any, model of assigning reads to bins requires that the model is reasonable. In the case where each read 

and bin are subject to the same mechanism and the bin abundance can be approximated by a gamma distribu-

tion, it will yield meaningful results. However, since the goals of a sequencing project may be more focused on 

an inventory of functions in the sample, or which use approaches where reads may be subject to varying me-

chanisms, there may be special considerations as to why this model will not work.  

With the introduction of new high throughput sequencing technologies such as 454 pyrosequencing and Illumi-

na, sequencing of metagenomic datasets is increasingly performed with more than one method. It is common to 

use any combination of Sanger, 454 and Illumina for a project, since they all yield nucleotide sequences. Fur-

thermore, different versions of each platform result in different size reads. Assembly of such hybrid datasets 

results in contigs comprised of reads of varying length, which must be taken into account when calculating the 

number of reads per bin. This renders the initial assumption of equal read length invalid, and the process cannot 

be easily be modeled without a detailed knowledge of the contributions from each technology. 

Furthermore, different sequencing technologies have their own biases. For instance, Sanger technology is known 

not to be able to sequence regions with strong secondary structures, while 454 may fail to accurately sequence 

regions with homopolymeric repeats. Illumina has biases in the base composition of the sequences and chimeric 

sequences (Quail, et al., 2008). It is not uncommon for all methods to find an appreciable proportion of reads to 

be duplicates and cause an uneven distribution of read coverage across the targeted sequencing regions. As a 

consequence, these unfavorable features result in difficulties in under-represented genome regions, particularly 

when the sequences are from genomes with base compositions at the extremes of high or low G+C content. 

Conversely, duplications can result in artificially more highly occupied contigs.  
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It is also known that the quality of sequence is lower towards the end of the read. Furthermore, extraneous se-

quences from the vectors are frequently included. When these reads are used for assembly of isolate genomes 

we expect that the errors will be eliminated by the large coverage of the sequencing. In the metagenomic data-

sets however, the luxury of high coverage is rarely enjoyed. Using reads with errors or contamination can result 

in false positive assemblies, which will artificially increase the occupation of bins and thereby complicate the 

modeling.  

Finally, some sequencing projects may employ novel assembly strategies that are tailored to the project at hand. 

While this is expected and sometimes necessary for the specific project, the resulting bin spectrum may not be 

suitable for studies such as described in this work. For instance, the metagenomes of the intestinal microbiota of 

two human subjects were sequenced (Vaishampayan et al, submitted), and the coverage of the genomes of or-

ganisms present in both metagenomes was artificially increased by combining the reads from both subjects into 

one assembly. That consolidated assembly was later separated into subject-specific assemblies, each one retain-

ing only the reads obtained from that subject and replacing any reads from the other with N’s (undefined nuc-

leotides). This artificial enrichment of reads per bin resulted in a considerable underestimation of the total DNA 

in the sample. 

Although the modeling of a metagenome may seem daunting, given the nature of the technology, we should not 

be discouraged from attempting to seek a deeper theoretical understanding of what may be the most significant 

development in genomics in recent years, namely the sampling of DNA from mixed, complex communities. Here, 

the Brass estimates may provide a quick and easy indication of the underlying population of genetic material, 

and could be used in conjunction with other estimators, for instance the Chao1 estimator of the lower bound of 

species/bin richness. 
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Figures 

 

Fig. 1. The effect of community complexity on the expected number of reads per bin (λi) for each bin i. In a sim-

ple community with a single genome, λ is approximately equal for all bins. Here, the observed bin spectrum 

(number of reads per bin) follows a Poisson distribution. However, in metagenomic samples from complex 

communities, bins will be drawn from different genomes that are present in varying abundances. Therefore, the 

value of λ is not the same for all bins. If λ follows a gamma distribution, then the bin spectrum will follow a nega-

tive binomial distribution and can be modeled.  

 

 

Fig. 2a. Blue curve: Estimated log bin spectrum for the Lake Washington formate dataset. Red stars: The log 

number of observed bins. Note that the observed value at 0 reads per contig is 0. The χ2-score for this fit is 3.7; 

we cannot reject the assumption that the bin abundance is gamma-like.  
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Fig.2b. Blue curve: Observed and estimated log bin abundance distribution for the termite hindgut dataset. The 

χ2-value is 1.0. 
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